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� Abstract In recent years, the analysis and modeling of networks, and also net-
worked dynamical systems, have been the subject of considerable interdisciplinary
interest, yielding several hundred papers in physics, mathematics, computer science,
biology, economics, and sociology journals (Newman 2003c), as well as a number of
books (Barabasi 2002, Buchanan 2002, Watts 2003). Here I review the major findings
of this emerging field and discuss briefly their relationship with previous work in the
social and mathematical sciences.

INTRODUCTION

Building on a long tradition of network analysis in sociology and anthropology
(Degenne & Forse 1994, Scott 2000, Wasserman & Faust 1994) and an even longer
history of graph theory in discrete mathematics (Ahuja et al. 1993, Bollobas 1998,
West 1996), the study of networks and networked systems has exploded across
the academic spectrum in the past five years. Spurred by the rapidly growing
availability of cheap yet powerful computers and large-scale electronic datasets,
researchers from the mathematical, biological, and social sciences have made
substantial progress on a number of previously intractable problems, reformulating
old ideas, introducing new techniques, and uncovering connections between what
had seemed to be quite different problems. The result has been called the “new
science of networks” (Barabasi 2002, Buchanan 2002, Watts 2003)—a label that
may strike many sociologists as misleading, given the familiarity (to social network
analysts) of many of its central ideas. Nevertheless, the label does capture the sense
of excitement surrounding what is unquestionably a fast developing field—new
papers are appearing almost daily—and also the unprecedented degree of synthesis
that this excitement has generated across the many disciplines in which network-
related problems arise.

In reviewing the main results of this field, I have tried to strike a balance between
the historical progression of the ideas and their logical order. To this end, the first
section describes the main network modeling approaches, regarding local struc-
ture, global connectivity, searchability, and highly skewed degree distributions.
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I then summarize related empirical studies and discuss some of the issues asso-
ciated with interpreting empirical data. Finally, I review preliminary progress on
applications of network models to dynamical processes like disease spreading and
information exchange. Throughout the discussion, I focus on the motivation and in-
terpretation of ideas and results, referring the reader elsewhere (Newman 2003c)
for the mathematical details. And although I concentrate on developments that
seem most relevant to social networks, it is worth bearing in mind that many
of the same results have been applied to, or motivated by, problems in other
disciplines.

MODELS OF NETWORK STRUCTURE

Small-World Networks

An early contribution to the new science of networks, and one that captures some
of its major themes, was that by Watts & Strogatz (1998), in which the authors
made several related but distinct points:

1. Real-world networks are neither completely ordered nor completely random,
but rather exhibit important properties of both.

2. Some properties of these networks can be embodied by simple mathematical
models that interpolate between order and randomness. In Watts & Strogatz’s
specific example, “order” was represented by a uniform one-dimensional lat-
tice,1 where each node was connected to its k nearest neighbors on the lattice,
and “randomness” was characterized by a tunable parameter p that specified
the fraction of randomly rewired links (see Figure 1a).

3. These properties can be quantified with simple statistics: for example, the
clustering coefficient C of a network is a measure of local density, and the
average shortest path length L is a global measure of separation. In the case
of the proposed model, L and C can be measured as a function of p.

4. When p = 0 (completely ordered), the network is “large” [L(0) ∼ N/2k]
and “highly clustered” [C(0) ∼ 3/4], and when p = 1 (completely random),
it is “small” [L(1) ∼ ln(N)/ln(k)] and “poorly clustered” [C(1) ∼ k/N],
suggesting that path lengths are short only when clustering is low.

5. However, the model exhibits a broad region of p values in which C(p) is
high relative to its random limit C(1), yet L(p) is, roughly speaking, as
“small” as possible (see Figure 1b). Watts & Strogatz (1998) coined the term

1Throughout this paper, the term “lattice” is used in the physicist’s sense of a crystal lattice
(roughly, a low-dimensional grid), not the mathematician’s sense of a partial ordering on
a set of elements [as in, for example, Galois Lattices that have been used to represent
affiliation networks (Freeman & White 1993)].
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Figure 1 (a) Schematic of the Watts-Strogatz model. (b) Normalized average shortest
path length L and clustering coefficient C as a function of the random rewiring parameter
p for the Watts-Strogatz model with N = 1000, and 〈k〉 = 10.

small-world networks2 to refer to networks in this class, in reference to
the early work of Pool & Kochen (1978), and subsequent experiments of
Milgram and colleagues (Korte & Milgram 1970; Milgram 1967; Travers &
Milgram 1969).

6. Because the conditions required for any network to belong to the small-
world class (some nontrivial local order, combined with just a small fraction
of long-range, random shortcuts) were relatively weak, Watts & Strogatz
(1998) predicted that many real-world networks—whether social networks

2Watts & Strogatz were not, in fact, the first to use the term small-world networks: that
distinction belongs to Eugene Garfield (1979), who used it in a review article on the topic
of small-world research. The term does not appear to have caught on, however, until Watts
& Strogatz defined it to refer to networks with high local clustering and short global path
lengths.
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or otherwise—ought to be small-world networks. They then checked this
prediction by considering three network datasets—the affiliation network of
movie actors, the power transmission grid of the western United States, and
the neural network of the nematode Caenorhabditis elegans—and found that
all three examples satisfied the small-world criteria.

7. Finally, the authors claimed that the structure of a network can have dramatic
implications for the collective dynamics of a system, whose connectivity
the network represents. In particular, they claimed that large changes in
dynamical behavior could be driven by even subtle modifications to the
network structure—modifications that may be imperceptible to actors with
only local knowledge of the network. They supported this claim with the
example of a simple disease-spreading model, demonstrating that both the
extent of an epidemic, and also the time taken for it to spread, were sensitively
dependent on the level of randomness in the network—only a small amount
of randomness was required for large, rapidly spreading epidemics to occur.
In related work, Watts (1999) found equally dramatic effects of network
structure on dynamics for the emergence of cooperation in a multiplayer
game of Prisoner’s Dilemma, the synchronization of coupled oscillators, and
the ability of locally connected cellular automata to “solve” certain global
computation problems.

Watts & Strogatz’s observations, although new to the mathematical literature
of coupled dynamical systems, and also to the condensed matter physics commu-
nity, were not, in spirit at least, new to mathematical sociologists. Parameterized
models of locally ordered but otherwise random networks, for example, had been
the object of social network analysts’ attention for decades, at first according to
Rapoport’s notion of random-biased nets (Rapoport 1951, 1957), and more recently
according to what are generically referred to as exponential random graph mod-
els, developed by Holland & Leinhardt (1981), Frank & Strauss (1986), and others
(Anderson et al. 1999, Pattison & Wasserman 1999, Robins et al. 1999, Wasserman
& Pattison 1996). Furthermore, Granovetter (1973), following Rapoport, had intro-
duced the distinction between “strong” and “weak” ties, where the former could be
construed as arising from local ordering principles like homophily (Lazarsfeld &
Merton 1954) and triadic closure (Rapoport 1953a), and the latter from occasional
random contacts, which Granovetter called local bridges, but which are clearly
analogous to Watts & Strogatz’s shortcuts. And finally, Rapoport (1953a,b) and
others (Kretschmar & Morris 1996) had long been concerned with the effect of
socio-structural biases in otherwise random networks on the spread of information
or infectious disease.

However, a distinguishing feature of Watts & Strogatz (1998), and the one that
arguably generated much of the subsequent interest in the physics community, was
their identification of a universal class of networks; that is, a family of networks that
share certain aggregate properties (in this case small L and large C) regardless of
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many of their individual details. This finding had two implications, both of which
fit naturally into a physicist’s worldview: (a) that at least some interesting features
of even very complex networks could be captured by extremely simple models,
and (b) that metrics and models devised to address social network problems might
be usefully applied in other disciplines as well. Condensed matter physicists have
subsequently analyzed what is now called the Watts-Strogatz model, or variants of
it, in great detail (Barrat & Weigt 2000; Barthelemy & Amaral 1999; Dorogovtsev
& Mendes 2000; Kulkarni et al. 2000; Newman & Watts 1999a,b; Newman et al.
2000). Specifically, it has been shown that whereas clustering C is a function of
the fraction of random shortcuts p (Barrat & Weigt 2000), the average shortest
path length L is a function of their absolute number Nkp (Newman et al. 2000).
Although this difference may appear subtle, its implication is that in a sufficiently
large network (i.e., as N is increased without bound) small-world behavior will
result whenever the fraction of random shortcuts is greater than zero—that is, for
any randomness at all. Furthermore, this result does not depend on the presence
of a one-dimensional lattice—it is true for any connected substrate—hence the
conditions required for small-world behavior to pertain are even weaker than at
first thought. A particularly striking result in this regard is that for a slightly
modified version of the ring lattice model (in which random shortcuts are added
rather than rewired), Newman et al. (2000) showed that the addition of only five
random shortcuts would halve the average path length L of the network, regardless
of its size.3

The Algorithmic Small-World Problem

Unfortunately, the Watts-Strogatz model suffers from some serious problems that
render it unsuitable as a model of social networks. One such problem was pointed
out by Kleinberg (2000a,b), who observed that the small-world experiments of
Milgram (Korte & Milgram 1970, Milgram 1967, Travers & Milgram 1969)
demonstrated not only that short paths existed between randomly chosen indi-
viduals in a large population, but also that the individuals in question could locate
these paths using only their local information about the network. Social networks,
in other words, are not only small; they are also searchable. In a remarkable piece
of analysis, Kleinberg proved that while models like that of Watts & Strogatz, in
which links are rewired uniformly at random, exhibited short global path lengths,
they could not exhibit searchability. He then proposed a class of generalized small-
world networks comprising (a) an underlying d-dimensional lattice, and (b) ran-
dom links superposed on the lattice, where the probability pi j of two nodes being
connected randomly is

pi j ∝ r−γ

i j , 1.

3Strictly speaking, this result applies only in the limit of large network size N.
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and ri j is the lattice distance from i to j. When γ = 0, random edges are formed
with uniform probability (equivalent to the original Watts-Strogatz model), and
when γ is sufficiently large, only local ties are possible. Clearly in neither limit is
the network searchable—in the former case because short paths cannot be found
(Kleinberg’s earlier result), and in the latter case because no short paths exist. In
fact, Kleinberg proved that only when γ = d, the dimension of the underlying
lattice, would the network be searchable in the sense that the number of steps
required to forward a message from a randomly chosen starter to a randomly chosen
target is “short”4 (Kleinberg 2000a). More generally, what Kleinberg showed is
that network structure is important not only locally, i.e., because an individual’s
neighborhood provides him with information and resources, but also globally in
that it enables him to navigate when searching for information or resources outside
his neighborhood.

Affiliation Networks

Another problem with the Watts-Strogatz model, and also with Kleinberg’s, is that
both models rely on the presence of some underlying lattice substrate to (a) guar-
antee global connectivity and (b) provide a distance metric that is independent of
the network distance. Clearly, social networks are not built on a lattice substrate,
so the question arises whether one can account for clustering, short path lengths,
and searchability in a less artificial manner. One alternative method of generating
networks with small-world properties that uses more plausible assumptions, but
is still parsimonious, is based on a bipartite (or “two mode”) affiliation network
(Wasserman & Faust 1994) comprising two classes of nodes: N actors each of
whom belongs to one or more of M groups. As shown schematically in Figure 2,
“single mode” (unipartite) networks can then be generated by projecting the bipar-
tite network onto either the set of actors (the “actor affiliation network”) or the set
of groups (the “group interlock network”), where the standard projection assumes
that actors/groups will be connected if they share at least one group/actor.

Following this construction, a simple affiliation-based network model was pro-
posed by Newman et al. (2001, 2002), who assumed that actors choose groups
uniformly at random. Using the method of generating functions (Wilf 1994), they
derived a number of results for random bipartite graphs, including the conditions
required for the formation of a giant connected component, as well as the degree
distribution, approximate average shortest path length, and clustering coefficient
of the actor affiliation and group interlock networks. Generalizing their approach
to allow for arbitrary degree distributions, Newman et al. were able to replicate
a number of features of real-world affiliation networks, such as Davis et al.’s
(2003) boards of directors data, and the collaboration networks of movie actors
(Watts 1999) and scientists (Newman 2001). One result of this work was that the

4Specifically, Kleinberg showed that whenever γ �= d the expected number of steps required
to complete a search increased as a polynomial function of the system size, but when γ =
d, it increased as a polynomial of the logarithm of the system size.
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Figure 2 Bipartite (two mode) affiliation network (center), defined in terms of N
actors belonging to M groups, along with unipartite (single mode) projections onto
the set of groups (top) and actors (bottom). A connection in the single mode network
occurs whenever two actors/groups share at least one group/actor respectively.

unipartite projection of a random bipartite network can account for much of the
observed clustering in empirical affiliation network data. Because two actors are
by definition connected whenever they share a group, the single mode projections
exhibit many overlapping cliques that contribute to high local clustering, even
when individuals choose groups at random. Furthermore, random bipartite net-
works almost always have short global path lengths; thus both actor affiliation and
group interlock networks will inevitably fall in the small-world class.

Subsequently, the basic affiliation model has been generalized in two ways.
First, Newman & Park (2003) have derived a number of results for random affil-
iation networks in which ties between actors in the single mode projection exist
only with a probability that is proportional to the number of shared groups and in-
versely proportional to the size of each group. And second, Watts et al. (2002) have
proposed a model of generalized affiliation networks in which distance between
groups is defined according to some number of social dimensions (e.g., geography
and occupation), and individuals are characterized by the coordinates of the groups
to which they belong. Ties between individuals are then allowed to form with a
probability that depends on the distance between the corresponding groups and a
tunable homophily (Lazarsfeld & Merton 1954) parameter that biases interactions
toward or away from similar nodes. They find that when groups are classified ac-
cording to more than one social dimension and when interactions are homophilous
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within any given dimension, then not only are the resulting networks highly clus-
tered with short global path lengths, but they are also searchable in a sense similar
to that proposed by Kleinberg (Watts et al. 2002). A recent Web-based experiment
(Dodds et al. 2003a) replicating the small-world method of Milgram (Korte &
Milgram 1970, Milgram 1967, Travers & Milgram 1969), but using e-mail in-
stead of paper mail, appears to support the claim of the generalized affiliation
model—and also earlier work (Bernard et al. 1988, Killworth & Bernard 1978)—
that chains of individuals can locate remote targets given only a few pieces of
identifying information such as geographical location and occupation.

Scale-Free Networks

A separate development in the recent literature on networks has been the grow-
ing realization that in many real-world networks, the distribution of the number
of network neighbors—the degree distribution—is typically right-skewed with a
“heavy tail,” meaning that a majority of nodes have less-than-average degree and
that a small fraction of hubs are many times better connected than average. This
qualitative description can be satisfied by several mathematical functions, but a
particularly popular one in the current literature is a power law (Barabasi & Albert
1999), which has the asymptotic form

p(k) ∼ k−α. 2.

In other words, the probability of a randomly chosen node having degree k decays
like a power of k, where the exponent α, typically measured in the range 2 < α

< 3, determines the rate of decay (smaller α implies slower decay, hence a more
skewed distribution). A distinguishing feature of power-law distributions is that
when plotted on a double logarithmic scale, a power law appears as a straight
line with negative slope α. As displayed schematically in Figure 3a, the straight
line form of a power law contrasts with a normal distribution (Figure 3b), which
curves sharply on a log-log plot, such that the probability of a node having a degree
greater than a certain “cutoff” value is effectively zero. A cutoff therefore implies a
characteristic scale for the degree distribution of the network, and because a power-
law degree distribution lacks any such cutoff value, it is often called a scale-free
distribution.

Distributions that are approximated by power laws in their tails have been stud-
ied for over a century, initially with respect to distributions of wealth (Mandelbrot
1960), but subsequently in a wide range of applications, including distributions of
species size (Yule 1925), word frequencies (Zipf 1949), scientific citation counts
(Price 1965, Redner 1998), and the sizes of various natural events [e.g., forest fires
and earthquakes (Sornette 2000)] and social entities [e.g., business firms (Axtell
2001, Simon & Bonini 1958) and cities (Zipf 1949)]. After examining the degree
distributions of three real-world networks—the collaboration network of movie
actors, the link structure of a portion of the World Wide Web, and the power trans-
mission grid of the western United States—Barabasi & Albert (1999) concluded
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Figure 3 (a) Power law with exponent α, when plotted on a double-logarithmic
scale, appears as a straight line with negative slope α. (b) A normal-type distribution
(i.e., with finite mean and variance) plotted on a double-logarithmic scale displays a
well-defined cutoff, above which probabilities are effectively zero.

that all three exhibited power-law tails [a claim later shown to be incorrect in
the case of the power grid (Amaral et al. 2000)], and coined the term scale-free
networks to describe them.

Barabasi & Albert (1999) also proposed a simple mathematical model (known
as the BA model) to account for their empirical observations. Their model—a
special case of a much earlier model developed by Simon (1955) and later applied
to citation networks by Price (1980)—embodied two mechanisms: population
growth and preferential attachment. The intuition behind the first mechanism is
straightforward: Real networks grow in time as new members join the population.
The mechanism of preferential attachment then expressed the notion, analogous
to Simon’s “Gibrat principle” (Simon 1955), Merton’s “Matthew Effect” (Merton
1968), and Price’s “cumulative advantage” (Price 1980), that newly arriving nodes
will tend to connect to already well-connected nodes rather than poorly connected
nodes. Specifically, Barabasi & Albert defined the probability p(ki) of an existing
node i with ki links receiving a new link as p(ki) = cki (where c is a normalizing
constant). Barabasi & Albert showed that over a sufficiently long time horizon,
the degree distribution of a growing network exhibiting linear preferential attach-
ment would converge to something in the form of Equation 2 with an exponent
α = 3.

A number of subsequent models have been proposed that expand on the basic
theme of growth with preferential attachment.

1. When either the creation of additional ties (Amaral et al. 2000) or the process
of searching for additional neighbors (Mossa et al. 2002) is costly, the power-
law distribution of degree becomes truncated, yielding a scaling region with a
characteristic cutoff (“broad-scale networks”), or even a narrow distribution
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around a well-defined mean (“single-scale networks”), depending on the
costs involved (Amaral et al. 2000).

2. When nodes are endowed with different intrinsic “attractiveness” (Bianconi
& Barabasi 2001), or else are allowed to continue making and breaking ties
after joining the network (Bornholdt & Ebel 2001), then any value of the
exponent between 2 and 3 can be obtained—a result that, unlike the singular
value of 3 above, is consistent with empirical exponents. Furthermore, unlike
in the original BA model, older nodes are not necessarily better connected
than more recent additions (Adamic & Huberman 2000).

3. Rather than assuming preferential attachment as a fundamental feature of
network growth, Krapivsky & Redner (2001) showed that it can be derived
from more basic growth assumptions: (a) that new arrivals select a member
of the existing population uniformly at random; and (b) that with some prob-
ability q they are redirected by their initial choice to one of its neighbors.
Because neighbors of a randomly selected node in a network have a degree
distribution that is proportional to kp(k) (Feld 1991, Newman 2003a), lin-
ear preferential attachment follows automatically, except that any exponent
between 2 and 3 can be generated, depending on the choice of q.5

4. Krapivsky et al. (2000) also showed that although linear preferential attach-
ment is only one of many possible preferential attachment mechanisms, it is
the only choice that leads to scale-free networks. If, for example, preferential
attachment is sublinear [e.g., p(ki) = ckγ

i , with γ < 1] then the resulting
degree distribution exhibits a characteristic cutoff; and if it is superlinear
(γ > 1) then a single “winner” will inevitably capture a finite fraction of
all available edges—an inequality even more extreme than is implied by a
power-law distribution.

5. Finally, a more general approach to growing random networks that does not
force new arrivals to connect to the existing network has been proposed by
Callaway et al. (2001), who identify conditions on the relative rates of node
and edge creation for the network to exhibit a giant connected component,
rather than assuming (as the original BA model does) that everyone is part
of the same growing cluster.

EMPIRICAL NETWORK ANALYSIS

Small-World and Scale-Free Networks

Stimulated by the predictions of universal features of networks, and encouraged
by the rapidly increasing availability of large data sets, numerous authors have
identified short global path lengths, high local clustering, and skewed degree

5Surprisingly, the model of Krapivsky & Redner (2001) turns out to be mathematically
identical to that of Simon (1955), even though it is motivated differently.
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distributions (often with power-law tails) in a variety of real-world networks, in-
cluding metabolic reaction networks (Ebenhoh & Heinrich 2003, Gomez et al.
2001, Jeong et al. 2000, Schuster et al. 2002, Wagner & Fell 2001), genetic regula-
tory networks (Bhan et al. 2002, Guelzim et al. 2002), protein-protein interaction
networks (Goldberg & Roth 2003, Vendruscolo et al. 2002, Wagner 2001, Wuchty
2002), biological neural networks (Morita et al. 2001, Shefi et al. 2002), food
webs (Dunne et al. 2002, Montoya & Sole 2002), transportation networks (Sen
et al. 2003), firm co-ownership networks (Kogut & Walker 2001), collaboration
networks of boards of directors (Davis et al. 2003) and scientists (Newman 2001),
the Internet (Faloutsos et al. 1999), and the link structure of the World Wide
Web (Adamic 1999, Albert et al. 1999, Barabasi et al. 2000, Broder et al. 2000).
The relative paucity of social network data in this list can be attributed to the
difficulty inherent in recording social interactions on a large scale—a practical
problem that the increasing extent of online activity (as a means of communi-
cating, conducting business, recording activities, etc.) may help at least partially
overcome.

Network Motifs

In recent work, Shen-Orr et al. (2002) and Milo et al. (2002) have extended the
exploration of network structure beyond small-world and scale-free categorizations
with their approach of detecting what they call network motifs—topologically
distinct subgraphs whose frequencies in a network can be used to characterize
its local structure. By systematically enumerating all the motifs comprising three
and four nodes in a number of networks, and then comparing the resulting counts
with those for random networks—a technique that, for the three-node motif case,
is identical in spirit to the triad census of Holland & Leinhardt (1981)—Milo
et al. identified three classes of networks: (a) networks that process information
(e.g., gene networks, the neural network of C. elegans, and forward logic chips);
(b) networks that process energy (e.g., food webs); and (c) networks that symbolize
communities of knowledge (e.g., the World Wide Web). Whether social networks
fall into any of these classes or constitute one or more additional classes remains
to be seen.

Community Structure

Another area of recent progress has been in the identification of community
structure—an intermediate scale of analysis between local (e.g., clustering, net-
work motifs) and global (e.g., connectivity, path lengths) structure. Standard ap-
proaches to identifying community structure have tended to rely on some version
of hierarchical clustering (Wasserman & Faust 1994)—a method for partition-
ing the network into increasingly similar subsets of nodes, where pairwise sim-
ilarity can be measured in terms of, for example, cohesion (Moody & White
2003, White & Harary 2001) or equivalence (Lorrain & White 1971). Hierarchi-
cal clustering based on similarity measures, however, has a tendency to split off
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poorly connected nodes, representing them as isolates rather than as members of
the groups with which they would naturally be associated. Recently, Girvan &
Newman (2002) have introduced a new method for identifying community struc-
ture that departs from the standard approach in two ways: (a) instead of comput-
ing pairwise node similarity, they compute edge betweenness centrality [roughly
speaking, Freeman’s (1977) notion of betweenness centrality, but applied to edges
instead of nodes]; and (b) instead of adding edges to an empty graph, they delete
them from the original graph in order of highest betweenness first, recomputing
the betweenness of all remaining edges after each deletion. Their results are a
striking improvement over hierarchical clustering methods, which they compare
directly with their own for a number of test networks. In addition, they iden-
tify plausible communities in previously untested networks, such as the NCAA
football competition and the research community of the Santa Fe Institute. Subse-
quently, Newman & Girvan (2003) have extended their method to include differ-
ent measures of edge centrality and also to optimize the edge deletion algorithm
such that the ratio of in-group to out-of-group ties in the partitioned network is
maximized.

Interpreting Empirical Data

When interpreting the measured structural features—whether local, global, or
community—present in empirical network data, an important but typically over-
looked distinction is that between what might be called “symbolic” networks,
which can be thought of as network representations of abstract relations between
discrete entities, and “interactive” networks, whose links describe tangible interac-
tions that are capable of transmitting information, influence, or material. Metabolic
reaction networks, word networks, and the World Wide Web, for example, are all
symbolic networks, whereas advice networks, the Internet, and the power trans-
mission grid are clearly interaction networks. The distinction is relevant to the
interpretation of structural features because in a symbolic relationship it is fre-
quently unclear how network metrics such as degree, path length, or centrality
should be interpreted with respect to their consequences for some particular so-
cial, physical, or biological process. What does it mean, for example, that any two
words in a large body of text can be “connected” through a short series of links,
defined as two words co-occurring in the same sentence (Cancho & Sole 2001)?
And how is this relationship different from the same two words being connected
through a short chain of semantic relationships (Motter et al. 2002)? Or in the case
of collaboration networks of movie actors, corporate directors, and scientists—
often cited as examples of social networks—how should one interpret costarring
in a movie versus sitting together on a board or coauthoring a paper? In all likeli-
hood, these relationships involve different kinds of social interactions, but because
the interactions themselves are underspecified, the network alone cannot be said
to reveal much about actual social processes.
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In the case of interaction networks, another frequently overlooked issue that
bears on the interpretation of empirical findings is how much the nodes themselves
vary in their intrinsic capacity to support connections. A widely cited paper by
Faloutsos et al. (1999), for example, examines the connectivity of the Internet at two
distinct scales of analysis: at the level of routers (the physical devices that actually
perform packet switching), and at the level of autonomous systems (collections of
routers that are administered by the same organization and typically correspond to
domain names;6 for example, columbia.edu can be considered a single autonomous
system). In network terms, at the router scale, routers are the nodes, and links
represent physical connections between routers; and at the autonomous system
scale, domains are nodes, and two domains are linked if any router in one domain is
connected to any router in the other. Faloutsos et al. (1999) claim that both networks
exhibit power-law degree distributions, and this claim has been widely interpreted
to imply that the Internet is scale-free regardless of the choice of representation
(Yook et al. 2002). But a careful look at their data reveals that whereas nodes at
the domain scale do indeed exhibit a large variance in degree, ranging between 1
and 1000 ties, individual routers never have fewer than 2 ties and never more than
40.7 Furthermore, the exponent of the rank-ordered distribution for router degree
corresponds to one with finite variance; hence, it is not scale-free.8

Based on their own results, therefore, Faloutsos et al.’s conclusion should have
been that the Internet is scale-free at the autonomous system level, but not at
the router level, where the likely explanation is that the autonomous systems
themselves exhibit a wide range of sizes—large autonomous systems correspond
to large organizations that use many routers, whereas small organizations re-
quire only a few. Naturally, the more routers that lie within a single domain,
the more connections it can support to other domains; hence, as recent work
(Tangmunarunkit et al. 2001) suggests, much of the observed variance in the degree
distribution can be explained by the variance in the “size” of the nodes themselves.
What the network analysis seems to reveal, in other words, may not be a property
of network growth processes at all but merely a reflection of whatever processes
generate the size distribution of the organizations that host Internet routers (Simon
1955). More generally, the artifactual or epiphenomenal nature of at least some

6Although there is some disagreement over whether autonomous systems and domains are
in fact equivalent, they are generally agreed to be approximately so, and the distinction is
typically ignored (Faloutsos et al. 1999).
7These numbers apply to the Internet as of 1995, the only router-level data that Foloutsos
et al. (1999) present, and may well be different in today’s Internet.
8If γ is the exponent of the tail of a rank-ordered distribution and α is the exponent for the
tail of the corresponding density function, then necessarily α = 1 + 1/γ (this result follows
automatically from the definitions of the two distributions). Faloutsos et al. (1999) measure
γ < 0.5, corresponding to α > 3, which implies a finite variance and hence a finite scale.
Oddly, Faloutsos et al. do not make the connection between α and γ , instead measuring α

independently, with the (inconsistent) result that α < 3.
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recent empirical network findings suggest that care is required when claiming uni-
versal features of networks, particularly when the claims in question extend to the
collective dynamics of networked systems—the topic to which we now turn.

NETWORKS AND COLLECTIVE DYNAMICS

Without doubt, the structure of real-world networks, and the evolution thereof,
are legitimate scientific problems the general resolution of which presents us with
substantial modeling and empirical challenges. It remains the case, however, that
networks are interesting to sociologists (and to researchers in other disciplines as
well) primarily because they are thought to influence individual (micro) and collec-
tive (macro) behavior, as well as the relationship between the two. At the individual
level, network exchange theory (Cook et al. 1983, 1993; Walker et al. 2000; Willer
1999), for example, has demonstrated that the outcomes experienced by actors
who engage in bilateral exchanges depend not only on their intrinsic preferences
and perceived status differences, but also on the larger patterns of relations (i.e.,
the network) within which both actors are embedded. And at the collective level,
sociologists since Solomonoff & Rapoport (1951) have been aware that the nature
and arrangement of network ties may play an important role in fostering the global
spread of information and disease (Boorman & Levitt 1980, Rapoport 1963), or
facilitating collective action (Granovetter 1973). Unfortunately, although a rigor-
ous and comprehensive vocabulary of network structure is clearly an important
part of this larger problem—and thus recent progress in that respect is certainly
helpful—the relationship between network structure and dynamical consequences
is anything but straightforward. For example, it is almost certainly the case that the
details of network structure (as in statistical measures like triad densities or degree
distributions) that are relevant to individual and collective behavior will depend on
the nature of the particular dynamical process under investigation (Watts 1999).
The interaction between network structure and collective dynamics is therefore a
daunting area of study, into which efforts to date have made only limited headway.
Nevertheless, some insights have been forthcoming for very simple dynamical
processes like the spread of disease and information.

Disease Spreading

Many infectious diseases of humans spread either through human-to-human or
human-to-animal interactions; hence, epidemiological models of infection seem
like an obvious area of application for the science of networks, and for social
networks in particular. It may come as a surprise, therefore, that the literature
on mathematical epidemiology has paid relatively little attention to the struc-
ture of the networks—whether sexual, friendship, community, or transportation
networks—through which infectious diseases manifestly spread. Whereas clini-
cal epidemiologists routinely apply methods like contact tracing that are inher-
ently network-oriented (Klovdahl et al. 1994, Potterat et al. 1999), mathematical
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epidemiologists have preferred to develop modeling approaches that assume indi-
viduals within any given population mix randomly (Anderson & May 1991, Bailey
1975, Murray 1993).

The basic model of disease spread, introduced by Kermack & McKendrick
(1927), is known as the SIR model representing the three basic classes—susceptible
(S), infected (I), and removed (R)—that any given individual can inhabit at a par-
ticular time. The corresponding dynamics are as follows: (a) for each unit of time
during which a susceptible is in contact with an infective, he or she may become
infected with some probability β (the infectiousness of the disease); (b) infectives
are removed from the population at some rate r (either by achieving immunity
or by death); and (c) removed individuals are reinjected into the susceptible pool
(through loss of immunity) at some other rate ρ. The populations S(t), I(t), and R(t)
[which necessarily sum to N(t), the population size] therefore contain all current
information about the state of the system. But because the infection stage requires
contact between a susceptible and an infective, an additional assumption (or set of
assumptions) is required to specify how individuals in different classes interact. In
the basic model, the simplest assumption is made—that individuals interact ran-
domly, in the manner of chemicals being stirred in a beaker. Thus the probability of
a susceptible encountering an infective is proportional to the product of the S and I
populations, where an interaction coefficient γ is usually introduced to specify the
average rate of pairwise interactions. This assumption dramatically simplifies the
subsequent analysis, yielding in the limit of large N a set of nonlinear differential
equations, which can either be solved explicitly (in trivial cases) or else be used to
determine the equilibrium states of the disease (typically the fraction of the popu-
lation that becomes infected) for different parameter settings and initial conditions.

SIR Models on Networks

Although the bulk of the mathematical epidemiology literature comprises increas-
ingly elaborate versions of the SIR model with random mixing, some progress
has been made in analyzing the steady-state behavior of some simple SIR-type
models in which interactions are described by a network. Most of this work to date
has focused on a generalized class of random network models in which properties
like the shape of the degree distribution and the tendency of high-degree nodes
to associate with each other (assortativity) can be varied arbitrarily (as opposed
to Bernoulli random graphs, in which they are fixed), but that do not exhibit any
local or community structure.

Early work by Kretschmar & Morris (1996) focused on the effects of concurrent
relations on the spread of sexually transmitted diseases. Individuals were allowed
to choose partners at random but were constrained in how many partnerships
could be maintained simultaneously. By fixing the average degree of the network
at 〈k〉 = 1, Kretschmar & Morris showed that when concurrent relations were
forbidden, the network would necessarily disintegrate into N/2 isolated dyads,
thus limiting any outbreak of disease. But when concurrency constraints were
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Figure 4 Comparison of disease spreading on Bernoulli (standard) and scale-free
random networks. The steady-state fraction of infectives displays a distinct phase
transition (i.e., an epidemic threshold) in the case of a Bernoulli random graph, but not
for the scale-free network.

lifted, the resulting variance in degree caused the network to exhibit a giant con-
nected component, thereby enabling most outbreaks to reach a finite fraction of the
population. Pastor-Satorris & Vespignani (2001) have extended Kretschmar &
Morris’s notion of concurrency by investigating disease spreading on random net-
works with power-law distributions of degree. Their main finding has been that
infinite random networks exhibiting power-law degree distributions with an ex-
ponent α < 3 do not exhibit the epidemic threshold predicted by uniform mixing
models. Rather, as indicated schematically in Figure 4, the fraction of the pop-
ulation infected in a standard SIR model is finite for all non-zero values of the
infectiousness—a result that Lloyd & May (2001) subsequently pointed out had
been derived earlier using different methods (Anderson & May 1988). The ex-
planation is that in a scale-free network the presence of highly connected hubs
(roughly equivalent to very high concurrency in the language of Kretschmar &
Morris) ensures that even relatively benign diseases will spread widely if they
infect even a single hub. The claim that networks of sexual contacts are, in fact,
scale-free (Liljeros et al. 2001), however, has subsequently been questioned (Jones
& Handcock 2003), as has the absence of the epidemic threshold when factors such
as the geography (Warren et al. 2002), transitivity (Eguiluz & Klemm 2002), at-
tenuation of infectiousness over time (Wu et al. 2004), and the finite size of real
networks (May & Lloyd 2001) are taken into account.

Another area of active investigation concerns assortative mixing in random net-
works, where assortativity implies that high-degree nodes tend to be connected
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disproportionately to other high-degree nodes (in disassortative networks, high-
degree nodes tend to be connected to low-degree nodes). A number of measures
of assortativity have been proposed (Gupta et al. 1989, Maslov & Sneppen 2002,
Pastor-Satorras et al. 2001, Vazquez et al. 2002), but the simplest and most flex-
ible appears to be that of Newman (2002, 2003b), who defines it in terms of the
Pearson correlation coefficient of the degrees of adjacent nodes9—a definition that
can be applied somewhat more generally to any scalar attribute such as age, race,
etc. (Newman 2003b). Surveying a variety of real-world networks, Newman con-
cluded that social networks tend to exhibit positive degree correlations—hence
assortative mixing—whereas technological and biological networks (e.g., power
grid, Internet, food webs) are disassortatively mixed. Applying this finding to the
spread of disease, Newman showed that in networks with assortative mixing, the
giant connected component tends to be smaller than in purely random networks
but has an exceptionally small diameter and is also extremely resilient to discon-
nection. When mixing is disassortative, the opposite result applies, where both
findings are consistent with earlier claims concerning the effects of assortativity,
based on traditional random mixing models (Gupta et al. 1993).

In addition to studying random networks, scholars have made some efforts to
study the effects of local network structure on disease propagation. For a standard
SIR-type model adapted to spread on a small-world network, Watts & Strogatz
(1998) used computer simulations to suggest that even a small probability of ran-
dom rewiring would dramatically reduce the infectiousness required of a disease in
order for it to infect a finite fraction of the population—a result that was similar to
earlier work by Ball et al. (1997). Furthermore, Watts & Strogatz showed that for a
highly infectious disease—that is, one for which a global epidemic is a certainty—
the time required for the entire population to become infected is approximately
proportional to the average path length of the network and hence highly suscep-
tible to the fraction of random shortcuts. These early results have been refined
subsequently by Newman & Watts (1999b) and Moore & Newman (2000a,b),
who used an equivalent percolation model (Stauffer & Aharony 1992) to study the
impact of random shortcuts on the steady-state size of an epidemic in one- and two-
dimensional lattices. Similar models have also been proposed by Keeling (1999)
and Eames & Keeling (2002), with similar results. And Kuperman & Abramson
(2001) found that when recovered individuals in an SIR model instantly become
resusceptible (the so-called SIS model), low levels of randomness lead to low-level
endemicity, high randomness leads to global infectivity, and intermediate levels
generate self-sustained oscillations of the infected population—reminiscent of the
seasonality of diseases like influenza.

A somewhat more general outcome of these models is the notion of a correlation
length of a network, defined as the distance between ends of shortcuts (Newman &

9In a Bernoulli random graph, degree assortativity is by construction zero; hence, real
networks can be characterized as assortative or disassortative to the extent that they exhibit
a positive or negative degree correlation, respectively.
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Watts 1999b). The correlation length regulates how far from its source a contagious
influence must spread before it “feels” the effect of the shortcuts. Hence an outbreak
of disease can be divided naturally into two stages: (a) a local growth phase in which
its spread is slowed by the redundancy present in the local topology of the network
(e.g., a lattice); and (b) a global growth phase, in which it can spread exponentially
throughout the network via the random shortcuts. Because the correlation length
governs the transition from local to global growth, these models suggest that to be
effective, strategies for preventing epidemics should focus on eliminating even very
rare shortcuts, thus prolonging local growth for as long as possible. The correlation
length of networks may also be important from an evolutionary perspective. Boots
& Sasaki (1999) have observed that vector-borne diseases such as malaria and
cholera tend to be more virulent (that is, they kill off their hosts rapidly) than
infectious diseases spread by direct contact. Their explanation was that vector-
borne diseases have historically been able to spread via long-range connections—
transported by mosquitoes or flowing water, for example—whereas human-to-
human infections have been more constrained by geographical proximity and hence
must survive a local growth phase before they can reach epidemic status. Diseases
that rely on direct contact will therefore evolve lower virulence, they argued, in
order not to burn themselves out before they reach the correlation length, whereas
diseases that are not constrained by an initial local growth phase will evolve to
be highly virulent. Boots & Sasaki then suggested that as the correlation length
of a network shrinks on account of the introduction of random shortcuts—as the
world becomes smaller—one might expect the evolution of more virulent human-
to-human diseases.

Social Contagion

An important but less-studied variant of contagion applies to a class of models
that deal with collective decision making. Whether in the context of innovations
(Rogers 1995), competing technologies (Arthur 1989), cultural fads (Banerjee
1992, Bikhchandani et al. 1992), social norms and conventions (Young 1998), co-
operation (Axelrod 1984, Glance & Huberman 1993), social disorder (Lohmann
1994), or financial markets (Mackay 1932, Shiller 2000, Sornette 2003), indi-
viduals making decisions frequently pay attention to the actions or decisions of
other individuals (Katz & Lazarsfeld 1955, Watts 2003). Hence, the aggregation
of individual to collective decision making can be understood in terms of social
contagion, where decisions are “transmitted” from one individual to another in
a manner reminiscent of disease. Unlike SIR-type models, however, which as-
sume contagion to be a memory-free process, individuals making decisions are
affected simultaneously by past as well as current interactions. In an SIR model,
for example, the probability of a susceptible becoming infected upon contact with
an infective is the same regardless of how many infectives it has previously en-
countered. Hence, the cumulative probability of infection over a succession of
contacts looks roughly like Figure 5a. By contrast, the probability of believing an
apocryphal rumor or adopting a new innovation may change dramatically upon a
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Figure 5 (a) The cumulative probability of infection for an SIR-type model increases
approximately linearly with the number of exposures to infectives—a consequence of the
assumed memory-free nature of biological infection. (b) In social contagion, decisions are
costly and are affected by the memory of past interactions; hence, the cumulative probability
of “infection” exhibits threshold-like behavior.

second or third (or subsequent) exposure, thus resembling Figure 5b, where the
sudden jump occurs when the individual’s “threshold” of belief is exceeded.

Threshold models of this kind arise widely (Boorman & Levitt 1980,
Granovetter & Soong 1988, Schelling 1978, Watts 2003) and can display very
different collective dynamics than the SIR-type models described above. When
individuals are assumed to mix randomly, for example, SIR models admit the pos-
sibility that an epidemic can be triggered by an infinitesimal initial seed (even a
single infective may suffice), whereas models that embody nontrivial thresholds
require an initial critical mass—that is, a finite fraction of the population—before
global infection is possible (Dodds & Watts 2004). And when social contagion
takes place via a sparse network, epidemics—sometimes called global cascades—
can only occur for social contagion when the connectivity of the network is neither
too sparse nor too dense (Watts 2002). It is the latter condition that is surprising
because in biological contagion greater connectivity always implies a greater pos-
sibility that a disease will spread. In social contagion, however, dense connectivity
renders many individuals impervious to novel signals, thereby quashing cascades
before they can even begin. Another consequence of increasing the connectivity
of sparse random networks is that cascades become larger but increasingly rare.
As a result, it is possible for a universal cascade (i.e., one affecting the entire pop-
ulation) to be triggered by a random shock that, a priori, is indistinguishable from
hundreds of innocuous shocks (Watts 2002).

Network Robustness

Another class of network-related processes that has been the subject of recent
attention concerns the origins and effects of node failure. Whether applied to
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routers in the Internet, airports in the air-transportation system, or individuals in
a large organization, nodes in interactive networks are generally susceptible both
to endogenous failure—the risk of which rises dramatically whenever a node’s
limited capacity to process information or material is exceeded by endogenously
generated demand—and also to exogenous failure, driven for example by random
component breakdown, sickness, accidents, environmental catastrophes, or even
intentional attack. A robust network is one that resists one or both kinds of failure,
ideally under a wide range of environmental conditions.

Assuming exogenous failures, Albert et al. (2000) demonstrated with computer
simulations that scale-free random networks of the kind generated through growth
and preferential attachment exhibit much greater resilience to random failures than
Bernoulli random graphs, where they defined resilience as the size of the largest
connected component remaining after a certain fraction of nodes in the network
had been removed. When nodes were removed preferentially, however, in order
from highest to lowest degree, the opposite result pertained. The explanation for
both results is that the connectivity of a scale-free network is determined almost
entirely by the small fraction of highly connected hubs that occupy the tail of the
degree distribution. Because random failures are relatively unlikely to affect the
hubs, the only nodes that are likely to become disconnected are those that fail. But
when the hubs are deliberately targeted, each individual failure has the potential
to impact the connectivity of the entire network. Subsequent work (Callaway et al.
2000; Cohen et al. 2000, 2001) has confirmed this basic feature of scale-free
networks and extended the findings to more general classes of degree distributions
(for example, power-law distributions with finite cutoffs), and also for link as well
as node failure (Callaway et al. 2000).

More recently, endogenous failure—due, for example, to network congestion—
has begun to be incorporated into models of network robustness (Arenas et al. 2001;
Dodds et al. 2003b; Goh et al. 2001; Guimera et al. 2001, 2002). For example,
Arenas et al. (2001) have shown that when randomly chosen pairs in a pure hierar-
chy pass messages to each other, where intermediate nodes incur a small cost for
each message forwarded, then at a critical rate of message passing network con-
gestion undergoes a phase transition (Newman & Barkema 1999), above which
almost all messages are inhibited by the limited capacity of the small fraction of
nodes at the top of the hierarchy. Thus both traditional (Williamson 1975) and
also more recent (Bolton & Dewatripont 1994, Radner 1993) economic models of
the internal architecture of firms, which typically propose pure hierarchies as the
most efficient form of organization, can be seen as ignoring a critical aspect of dis-
tributed problem solving—namely the capacity constraints inherent in distributed
communication.

Recently, Dodds et al. (2003b) have proposed a model of information exchange
in organizational networks that combines the notion of efficiency (understood
roughly as maximizing performance at minimum cost of adding network ties) and
robustness, finding that a simple algorithm for adding horizontal and vertical ties to
a pure hierarchical backbone yields what they call ultrarobust networks—networks
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that simultaneously minimize the likelihood of individual node failure (due to en-
dogenously generated congestion), and also the impact on global connectivity
that results from failures arising out of either endogenous or exogenous causes.
The key to ultrarobustness, they find, is that organizational networks must exhibit
nonhierarchical ties that extend across all scales of the underlying hierarchy—
a quantitative result that stands in qualitative agreement with a longstanding
body of work in organizational sociology (Burns & Stalker 1961, Granovetter
1985, Lawrence & Lorsch 1967), and is also consistent with recent accounts
of firms surviving major disasters (Kelly & Stark 2002, Nishiguchi & Beaudet
2000).

CONCLUSION

As I hope this review has made clear, many of the ideas and metrics of the “new”
science of networks have either been borrowed from, or else rediscovered inde-
pendently of, a distinguished lineage of work in mathematics, economics, and
sociology. For example, the intuition that a few random “shortcuts” in the midst of
locally dense neighborhoods can generate the structure of small-world networks
(Watts & Strogatz 1998) bears a remarkable similarity to Rapoport’s (1963) anal-
ysis of random-biased nets, which inspired Granovetter’s (1973) investigation of
the strength of weak ties. Recent Internet-based social search experiments (Dodds
et al. 2003) explicitly acknowledge their debt to Milgram’s seminal studies (Korte
& Milgram 1970, Milgram 1967, Travers & Milgram 1969). The finding that pref-
erential attachment mechanisms in growing networks can lead to what are now
called scale-free networks (Barabasi & Albert 1999) turns out to be a special case
of Simon’s (1955) implementation of the Gibrat principle, better known in sociol-
ogy as the Matthew Effect (Merton 1968), and first applied to networks by Price
(1980). Related claims that highly connected hubs in a sexual network can enhance
the spread of infectious diseases (Pastor-Satorras & Vespignani 2001) are equiv-
alent to findings by Anderson & May (1988) that are well known in the mathe-
matical epidemiology community. The topic of network motifs, which is gaining
attention in the biological sciences (Milo et al. 2002, Shen-Orr et al. 2002), is, in
principle, identical to the triad census approach of Holland & Leinhardt (1981).
And recent work on the structure of ultrarobust networks (Dodds et al. 2003b) fits
into a long line of work in organizational sociology starting with Burns & Stalker’s
(1961) descriptions of organic organizations.

As much as it bears similarities to previous work, however, what is new about
the current generation of network-related research is a rapidly emerging and highly
interdisciplinary synthesis of new analytical techniques, enormously greater com-
puting power, and an unprecedented volume of empirical data. Sociologists have
much to gain from this progress, and also much to contribute. Most of the work
discussed in this review is taking place in the mathematical sciences, particularly
in physics. That is hardly surprising, as physics and mathematics typically lead
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the way methodologically, whereas biological and social sciences follow with
applications. But in this particular case, the flow of ideas has been bidirectional,
with many of the core ideas—not just applications—having come from sociol-
ogy. Physicists may be marvelous technicians, but they are mediocre sociologists.
Thus, if the science of networks is to live up to its early promise, then the other
disciplines—sociology in particular—must offer guidance in, for example, the in-
terpretation of empirical and theoretical findings, particularly in the context of
policy applications, and also in suggesting measures and models that are increas-
ingly relevant to the important problems at hand.
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